ANNUAL REPORT ON THE ENVIRONMENT # **CHAPTER IV** # WILDLIFE AND THE ENVIRONMENT IN FAIRFAX COUNTY # IV-1. IMPACTS OF DEER IN FAIRFAX COUNTY # A. OVERVIEW The adverse impacts of white-tailed deer in Fairfax County are readily recognized as a problem by many of its residents. While the "problem" is seen from a variety of perspectives, there is a general consensus that the root cause is "overabundance" of deer in many local areas. There is also a general public perception that a deer management program is needed to address the "problem". The road to an acceptable deer management solution, however, is not so easily determined. Some of the factors essential to a solution are subject to strenuous debate and attract a wide spectrum of opinion. For example, what is the optimum population level, and if population reduction is required, what means shall be used? The sport hunting community, recreational nature lovers, residential property owners, environmental preservationists, and animal rights/welfare groups have differing viewpoints on these issues. # **B. BACKGROUND** # 1. Are Deer Overabundant in Fairfax County? Caughly (1981) defined four contexts in which the term "overabundance" can be understood when referring to an animal species population. These definitions have since been widely used by most serious scholars in the wildlife management field and by public administrators responsible for wildlife management programs. - 1. When the animals threaten human life or livelihood. - 2. When the animals depress the density of, or destroy, particular favored species. - 3. When the animals are too numerous for their own good. - 4. When their numbers cause ecosystem dysfunction. Where does Fairfax County stand vis-a-vis these four criteria? The available data strongly (even overwhelmingly) suggest that: - 1. We experience an unacceptable number of deer-vehicle collisions resulting in deaths, injuries, and major property damage. Owners of commercial agricultural and nursery enterprises suffer substantial damage. - 2. In many areas of the County, deer routinely leave their enclaves of "natural" habitat to forage in nearby gardens and yards causing widespread damage to landscaping and thus major economic loss to property owners. Through voracious browsing, deer are rapidly eradicating numerous threatened and endangered botanical species from the "natural" habitat. In addition, this loss of plant habitat is adversely affecting numerous vertebrate and invertebrate species of smaller physical size, such as many bird species, that are unable to compete with large herbivores. - 3. Data for Fairfax County, based on Virginia Department of Game and Inland Fisheries (VDGIF) assessments spanning ten years, indicate that its various deer herds showed a single individual in excellent condition, a very few in good condition, most about evenly split between fair and poor condition, and a few emaciated individuals. This shows quite clearly that no longer can the available habitats meet the minimum nutritional requirements that would maintain the deer population in sound health. A 125-pound deer requires approximately 6.5 pounds of forage per day or some 2,370 pounds of vegetation per year. - 4. Many of our parklands and stream valleys show severe browse lines, nearly total eradication of understory, and loss of numerous species upon which the continuous process of woodland regeneration is dependent. These changes in turn lead to the inevitable loss of a wide variety of animal species. Thus, our remaining natural ecosystem is being severely deformed through the eruption of a single species that has become overdominant in the food chain. According to each of Caughly's four criteria, it is apparent that Fairfax County has a serious overabundance of deer. In recognition of the public perception of a significant problem, the Board of Supervisors directed County staff to develop a plan for deer management. In October of 1997, County staff contracted with a consulting firm to "study and review existing data on deer, deer-habitat interactions, deer-human conflicts, and deer management proposals within the County." Staff also asked the consultants to recommend suitable methods for addressing the various problem areas. These studies and recommendations were presented in the Consultants Report (Natural Resource Consultants, December 1997). In 1998 the County created a new position and appointed a Wildlife Biologist who had broad experience with Fairfax County parks and parkland In the summer of 1999 the County Executive convened an ad hoc Deer Management Committee of experts and stakeholders to discuss and evaluate the plan drawn up by the staff and the early implementation efforts. The report of this committee and its recommendations were forwarded to the Board of Supervisors in September 1999 in advance of the season of peak deer problems, which occurs in the fall. The Board of Supervisors approved recommended measures to reduce the deer population to more sustainable and less destructive levels. Since then, the deer management program has made substantial progress in achieving significant population reductions in some of our most threatened parklands. # 2. A Description of the Problem # a. Data on Deer Abundance in Fairfax County To begin this discussion, the terms overabundance and overpopulation should be distinguished. Overabundance refers to population levels that have adverse impacts on the community and other species, while overpopulation refers to population levels of the species that are an imminent danger to itself through disease and starvation. This latter phenomenon is responsible for the population eruption and subsequent collapse of deer herds that has been a topic of scientific study for the past 60 years. While the following information supports a conclusion that deer are overabundant in Fairfax County, neither the data nor experts from a variety of sources have indicated that a level of overpopulation exists, though the relatively poor health of the County's deer suggest that we may be approaching overpopulation. Data from the Virginia Department of Game and Inland Fisheries deer density surveys in Fairfax County parks prior to the County's deer management program showed deer densities from 90-419 deer/sq. mile (Table IV-1-1). | Table IV-1-1
Deer Density Surveys | | | | |--------------------------------------|-----------------------|--|--| | Location | Est. Deer/Square Mile | | | | Huntley Meadow Park | 90-114 | | | | Riverbend Park | 213 | | | | Meadowlark Gardens Park | 90-115 | | | | Bull Run Regional Park | 419 | | | | Fort Belvoir | 90 | | | | Mason Neck NWR | - | | | (Source: W. Dan Lovelace, Wildlife Biologist, Virginia Department of Game and Inland Fisheries.) While the many of the data are limited, taken collectively, the observations of professional park staff, poor health of evaluated deer, and high deer densities indicate that deer are overabundant and are negatively impacting the ecology of sizeable areas of Fairfax County. Unfortunately, there are few reliable data available for densities and extent of damage on private lands and the adjacent small islands and corridors of natural habitat. Even though the information available is primarily anecdotal, it is voluminous, and there is a general public perception of a significant and growing problem of deer overabundance. #### b. Causes of Overabundance in Urban/Suburban Areas # i. Urbanization/Changes in Habitat Over recent decades Fairfax County has transformed from a largely agrarian and woodland area to a multifaceted employment, residential, and retail area. Nearly 1,000,000 people reside in the 399 square miles of the County. Of this 399 square miles about 140 square miles is wooded and open land and some three square miles is remaining agricultural land. This change from an agrarian area to a developed one has markedly decreased the amount of land usually regarded as suitable for deer habitat and has changed their food sources and movement patterns. This urban/suburban habitat of the County provides a fairly good nutritional base for deer, including manicured lawns, athletic fields, college campuses, golf courses, and landscaped residential communities. Overabundance is particularly common where the course of development has left protected "islands" or "corridors" of deer habitat in or near urban and suburban areas. As the development process reduces the area of natural habitat, deer are forced into these remaining islands and corridors at very high population densities. Because the deer then deplete the forage plants in these enclaves, they venture out into the surrounding developed community in search of food. In such situations, conflicts with humans frequently arise in the form of deer-vehicle collisions and depredations on gardens and ornamental plantings (Flyger et al, 1983; Cypher & Cypher, 1988). Moreover, in such situations, natural predators (e.g., wolves, bobcats, mountain lions) have normally long since been eliminated and hunting is usually prohibited. #### ii. Loss of Predators The precolonial levels of deer in Virginia could be attributed to predation by bobcats, black bears, eastern gray wolves, and eastern mountain lions, in addition to the number taken by Native American hunters. While none of these predators depended solely on deer, the deer/predator interactions and the added effects of hunters kept the population levels low and well within the carrying capacity of the land. Increasing human populations and land development has virtually eliminated wildlife predators from the County. In the first half of this century, hunting had reduced the deer population to very low levels. However in the latter half of this century, with growing human population and reduction of huntable habitats, recreational hunting has almost disappeared in the County. While the number of deer harvested through "Out of Season Kill Permits" has increased in recent
years (Table IV-1-2), the combination of seasonal hunting and out-of-season kill permits does not affect the deer population at sufficient levels to prevent significant deer/human conflicts or ecological damage. | Table IV-1-2 Out of Season Kill Permits Issued For Deer Damage in Fairfax County Virginia Department of Game and Inland Fisheries | | | | | |---|---------|--------------|--|--| | Year | Permits | Number Taken | | | | 1989 | 5 | 25 | | | | 1990 | 3 | 4 | | | | 1991 | 19 | 41 | | | | 1992 | 18 | 43 | | | | 1993 | 42 | 222 | | | | 1994 | 31 | 131 | | | | 1995 | 65 | 193 | | | | 1996 | 165 | 244 | | | | 1997 | 147 | 310 | | | | 1998 | 157 | 297 | | | | 1999 | 216 | 377 | | | | 2000 | 197 | 263 | | | | 2001 | 148 | 398 | | | (Source: Mark Pritt and Jerry Sims, Wildlife Biologists, Virginia Department of Game and Inland Fisheries.) It should be noted that while the number of out-of-season permits has declined markedly in 2001, the number of deer taken has increased even more dramatically. This is quite consistent with intensification of problems in a smaller number of areas as land clearing for development squeezes the deer population into smaller and more isolated patches of habitat. #### c. Problems Created by Overabundance # i. Ecological Impact Effects of a persistent and overabundant deer population include the loss of biodiversity and a negative effect on ecological and biotic systems. These can be seen in a declining understory (lower height plants and shrubs that serve as a food source for birds) and the appearance of browse lines, which occur when deer eat almost all the vegetation within their reach and the woods develop a "line" at the top of their reach. While few detailed deer/forest impact studies have been performed in the County, in a report to the Division of Animal Control, Fairfax County Police Department, the Superintendent of Administration of the Northern Virginia Regional Park Authority noted that "the ever present browse line had now become a common sight in most of our parks. The deer have eaten all of the herbaceous and woody plant growth within their reach. This has eliminated an entire stratum of habitat from the parks." The browse line and loss of understory are not the only indications of this ecological impact. There is an abundance of technical literature reporting the effects of a high deer population on plant communities when the lower ecological carrying capacity (see page 10) is exceeded. However, the apparent poor health of the County's deer indicates a level of deer density that reportedly exceeds even the higher biological carrying capacity. There are also numerous studies documenting the negative effects of overabundant deer on wildlife species. For other vertebrates, this may occur through direct competition for food sources or more often by altering the habitat. For example, in some areas of the County the number of species of birds has markedly diminished through loss of the necessary habitat due to excessive browsing by deer. As noted in the 1997 Consultant Report and throughout the scientific literature, "The consequences of a persistent, overabundant deer problem can be long-term loss of biodiversity and negative impact to functioning ecological and biotic processes." We have already begun to see a loss of biodiversity that will ultimately lead to a loss of ecosystem stability with far more widespread and serious effects than the shorter-term effects of overabundant deer. # ii. Property Loss and Damage (Vehicular, Plantings) There currently is no accurate system to track data regarding the total property loss due to deer/vehicle collisions. The Fairfax County Police Department does an excellent job of analysis of the data on deer-vehicle collisions that require a police presence in their aftermath or that are otherwise reported. The numbers appear to have increased, but the data (Table IV-1-3) do not show a consistent trend. For those accidents tabulated from January 1998 through May 2001, the average damage per vehicle was about \$2,300 (\$2,111 for CY 2001). Over this same period, the Virginia Department of Transportation picked up 3,450 carcasses of deer killed in vehicular collisions from rights-of-way in the County. In 2001, VDOT picked up 870 deer carcasses from the roadway and immediately adjacent right-of-way in Fairfax County, which represents a significant decrease from earlier years. At least part of this decrease may be attributable to the County Deer Management Program, while part may be normal secular variation. | Table IV-1-3 Deer-Vehicle Collisions in Fairfax County | | | | | | |---|---------------|-------------------|------------------|-------|--| | Year | Non
Injury | Injury
Crashes | Fatal
Crashes | Total | | | 1993 | 154 | 6 | 0 | 160 | | | 1994 | 149 | 10 | 0 | 159 | | | 1995 | 127 | 6 | 0 | 133 | | | 1996 | 157 | 20 | 0 | 177 | | | 1997 | 168 | 17 | 1 | 186 | | | 1998 | 144 | 23 | 0 | 167 | | | 1999 | 177 | 18 | 1 | 196 | | | 2000 | 144 | 17 | 0 | 161 | | | 2001 | 143 | 22 | 0 | 165 | | (Source: Report prepared by Michael Uram, Fairfax County Police Department.) Police and highway experts estimate that only 20-25 percent of deer impacting vehicles die at the scene (i.e., on the road or in the right-of-way); many receive injuries that are soon fatal, but die in the woods or in a nearby yard. Thus, a reasonable estimate would indicate some 13,800-17,250 deer-vehicle collisions in the County during the 1998-2001 period. One can reasonably infer that many, if not most, of these collisions result in property damage to the vehicle. County personnel report an increasing number of complaints of damage to native and ornamental plants in Fairfax County. Referring again to the "Out of Season Kill Permits Issued for Deer Damage" (Table IV-1-2), an indication is given of homeowner attempts to address property loss primarily thought to be ornamental in nature. Further, although numerous deer management programs are available, such as planting less preferred species and fencing, the effectiveness of these methods declines dramatically with increased deer densities leading to declining food sources and willingness of deer to eat even undesirable plants. These activities may also tend to increase vehicular incidents as deer must look farther afield for food sources. #### iii. Disease Another problem associated with deer overabundance is the prevalence of Lyme Disease. See Section IV-3 below in this chapter for a discussion of Lyme Disease. # C. ISSUES IN ADDRESSING THE PROBLEM To effectively manage the deer population, the implications and interrelationships of population dynamics, carrying capacity, public opinion, and methods for management must be understood and incorporated into the program. # 1. Understanding Population Dynamics The concept of population dynamics is crucial to understanding the current problem and the development of a workable solution. There are no simple mathematical models that can be applied to determining the growth of the population of a species in a particular area, and the least complex deer management models and programs based on solely on nutritional deer carrying capacity (see section on carrying capacity below) consider neither the deer population's interactions with the human population nor its interactions with a biodiverse ecosystem. One important concept to understand is that of home range. Deer show a strong attachment to a home range, and it has been shown that deer forcibly relocated often die of malnutrition even if food is accessible in their new habitats. When natural dispersal from the home range occurs, it is usually the younger males that migrate. This has four implications for Fairfax County deer management: - 1. Deer often occupy a home range that can include both a park and the surrounding community or islands and corridors of "natural" habitat plus the yards and gardens of adjacent residential communities; - 2. A dramatic decrease in one area will not necessarily result, in the short term, in an increased dispersal of deer from other areas into the depleted area, with a consequent lessening of population density in those other areas; - 3. Deer cannot be eliminated from the County under today's conditions, because the deer surviving in surrounding home ranges will, in the long term, undergo natural dispersal and repopulate the depleted areas. This implies that parks and the surrounding areas must be managed as a unit and that solving the problem in one area does not automatically translate to another area; and - 4. The recent emergence of epizootic hemorrhagic disease (EHD), a viral disease fatal to deer but posing no threat to humans, may be a significant factor in natural reduction of the deer population over the next several years. EHD has sometimes been implicated as a significant factor in the boom-bust cycle observed within deer populations that have been the subject of long-term study. Within the past year, 53 deer fatalities due to EHD have been diagnosed in the southeastern portion of the County, and these diagnosed cases probably represent only a small fraction of those succumbing to the disease. Weather, the size and compactness of deer herds, and the overall health of the deer play a major role in EHD transmission. Thus, it is not possible to predict the future course of this disease within the County, except to note that it usually takes several years to run its course within a deer population and we appear to be in the early stages of an outbreak. Other concepts that affect population dynamics include compensatory reproductive responses, survival, and predation. Again, it must be noted that deer management is not a simple mathematical equation; it must take into account many biological and behavioral
factors, many of which are not fully understood, especially in an environment such as Fairfax County. For example, in many cases, as the size of an animal population decreases, the number of offspring increases despite the fact that food is becoming less adequate. This phenomenon leads to the population eruption-crash cycles that are widely discussed in the scientific literature. More complete data and an improved understanding of the unique characteristics of Fairfax County must be collected and considered as the management program evolves. # 2. Determining Carrying Capacity Goals Carrying capacity is the level of a population that can be supported by an ecosystem or tolerated by the community. To determine the appropriate population level as a goal for a management plan, it is essential to distinguish among the following: 1. Biological carrying capacity, i.e., a species specific level that is primarily concerned with the population that can be supported with the available nutritional resources; - 2. Cultural carrying capacity, i.e., a level that is driven by human concerns (the population that can be tolerated by the community at large); and - 3. Ecosystem carrying capacity, i.e., the population level that can be supported by an ecosystem without disturbance of its stability or reduction of its biodiversity. The biological carrying capacity is a traditional view that has been widely used by fish and game departments where a primary concern is to maintain adequate stocks of deer for sport hunting, but it does not adequately account for the effects of relatively high population levels on the ecosystem in which the species resides. The cultural carrying capacity is defined by Ellingwood and Spingnesti (1986) as the maximum number of deer that can coexist compatibly with local human communities before conflicting with some human interest. This level is driven by human values, economics, and desires independent of ecological considerations. DeCalesta (1998) used the term diversity carrying capacity in a more restrictive sense than ecosystem carrying capacity, but both concepts consider the maximum species population density that does not negatively impact diversity of fauna or flora, including diversity of habitat structure as well as species richness. He contends that deer impacts on biodiversity occur at population densities well below traditional definitions of ecosystem carrying capacity. Thus, biological carrying capacity is the highest population density and is considerably in excess of cultural carrying capacity (human societal tolerance), which in turn accepts notably higher densities than ecosystem carrying capacity. Finally, diversity carrying capacity has the smallest maximum population density. # 3. Considering Public Opinion Goals for management and methods to use to reach those goals are very different issues; consensus or conflict among groups of constituencies may occur at either or both levels. Goals may vary from a biological carrying capacity level that meets hunting concerns to a much lower carrying capacity level based on an ecological or biodiversity perspective. Cultural carrying capacity may run the gamut of levels, depending on the varying values and tolerances of different constituencies within the community. Even where there is agreement on the level of deer density desired, the methods to reach those goals may be in dispute. Some groups may have a zero-tolerance for lethal means, whereas others may readily support managed hunts or sharpshooters. As indicated in the 1997 Consultant Report, deer control action by the County should not be undertaken until it is determined that there is sufficient community and political support for it. Again, the need for data, this time in the form of public opinion surveys, is stressed. Additionally, the need to adequately educate the public about the issues is needed to ensure well-informed constituent responses. #### D. METHODS FOR DEER POPULATION MANAGEMENT # 1. Population Reduction Approaches # a. Let Nature Take its Course - Eruption/Collapse This approach is based on using no human intervention to affect the deer population one way or the other. This has been studied by wildlife biologists for more than half a century. The findings are that the population goes through an eruptive phase with explosive population growth until it is far above biological carrying capacity. This is followed by eruptions of parasitic and infectious diseases (such as EHD) and by large-scale starvation, which causes the population to crash to perhaps 15-25 percent of its peak level. Thereupon, the herd recovers to begin the cycle anew. Some populations have been followed through five or six successive cycles. Although the deer population of Fairfax County can be considered to be in the early stages of the eruptive phase, it is well short of a peak. Public concerns about the current and expected future impacts on the community rule this out as an option. #### b. Lethal Methods #### i. Managed Hunting Experiences with managed hunts over the past year indicate they have been highly cost effective in that revenue has exceeded costs for personnel and materials. This is in sharp contrast to their initial use in1998 when costs were high and relatively few deer were taken. The dramatic upturn in the learning curve is very encouraging. Necessarily, managed hunts are conducted primarily in parkland, and while the amount of deer population reduction in these local areas is no doubt ecologically beneficial, in terms of absolute numbers it has been insufficient to make an immediate noticeable difference in the overall problem. # ii. Archery Hunting Archery hunting has proven an effective and acceptable means of deer control in residential areas where use of firearms is deemed too hazardous. Archery is a quiet and short-range method, with most deer being taken within less than 100 feet. During the 1998 public hunting season, 789 deer were taken in Fairfax County, of which 597 were taken by archery and the remainder by shotgun. In 1999 archery accounted for 686 of the total of 1046 deer, and in 2000 accounted for 626 of 1028 deer. With out-of-season kill permits, archery can be used year-round even in residential neighborhoods. # iii. Traditional Public Hunting Under current restrictions outlined by VDGIF, the above figures show that traditional public hunting is not sufficient to address the problem, based on hunters' limited access to deer habitat and preference for antlered deer. Moreover, the habitat that is accessible is not where the major problem areas are located. # iv. Trap and Kill This method has usually been conducted by darting with anesthetics and dispatching the animal by gunshot or a lethal drug. The former is less effective than sharpshooters while the latter leaves the meat unfit for human consumption. The use of drop nets and stun guns are explained in the 1997 Consultant Report as a possible lethal method. This method allows for release of non-targeted males and results in meat uncontaminated by drugs but is very cost inefficient. # v. Sharpshooters The use of professional animal control personnel, police experts, or qualified and experienced volunteers has been proved to be a safe, cost-effective, and successful means of management if lethal methods are employed. Earlier experience with this method in Fairfax County has led to significant refinements and greatly improved cost-effectiveness, with a cost per deer taken ranging from \$4.15 to \$22.97. Once again, the number of deer removed from the population by this method is not sufficient to have more than a modest local effect. #### vi. Reintroduce Predators The reintroduction of the usual species of deer predators into an urbanized setting such as Fairfax County is biologically unworkable and publicly unacceptable. #### c. Nonlethal Methods #### i. Trap and Relocate Experiments with this approach have been largely unsuccessful due to high initial mortality (up to 85%) of the relocated deer. Moreover there are few locations within a reasonable distance of this area that would accept relocated deer, since most nearby areas have similar problems. The use of drop nets and stun guns are suggested in the 1997 Consultant Report as a possible method for deer capture. More traditional methods use anesthetic darts. This method is considered infeasible for Fairfax County. # ii. Contraception Steroidal/hormonal contraception has proved very costly and difficult to implement and only very marginally effective. Immunocontraception, on the other hand, holds some promise for deer management, but it is currently in an experimental stage. The Humane Society of the United States is conducting field studies at the enclosed National Institute of Standards and Technology site in Montgomery County, but due to difficulty with marking deer, the Humane Society is not yet conducting studies for free-ranging deer such as those in Fairfax County. The recent technical literature discusses requirements for sites chosen for pilot tests. All indications are that this is not a near term solution for the County but might hold promise for limiting populations in the future, once they have been reduced to desired levels # 2. Conflict Mitigation Approaches Conflict mitigation is directed toward reducing the direct impacts of deer on the human population and thereby increasing the tolerance of the community for the existing deer population. #### a. Supplemental Feeding Conceptually this approach is supposed to divert deer from the landscape plantings in gardens and yards. Supplemental feeding might somewhat improve the health of the existing deer population but would almost certainly drive it to even higher levels. Thus, consideration of this approach would be counterproductive for Fairfax County since it does nothing to reduce the excess deer population. #### b. Fencing Fencing is only rarely effective since deer are noted for leaping even eight
foot fences. Thus, fencing is a costly and ineffective solution, especially when deer are seeking out preferred plant species. #### c. Repellants Repellants have had some limited success but are generally costly and most require frequent replenishment. Also many of them have odors that are no more acceptable to humans than they are to deer. #### d. Roadside Reflectors Roadside reflectors divert light from vehicle headlights toward the sides of the roadway and are intended to frighten the deer away from the road thereby reducing the likelihood of vehicle collisions. The method is useful in the evening and early morning hours when the majority of deer-vehicle collisions occur. While expensive this technique has shown some promise in tests. The Virginia Department of Motor Vehicles has given the County a \$40,000 grant to conduct studies of the effectiveness of roadside reflectors. The first test site was a section of Telegraph Road that has had a high incidence of deer-vehicle collisions. The initial results show promise but are confounded by three other factors: (1) construction activity in the area may have driven many deer away, (2) a high incidence of epizootic hemorrhagic disease that may have naturally reduced the population, and (3) an archery hunting program at Fort Belvoir that definitely reduced the population in that area. The County staff have identified and begun testing at additional test sites, but these also have problems that render data interpretation extremely difficult. #### e. Underpasses Construction of underpasses has been suggested as a way of providing deer with a safe means of getting to the other side of busy roads. Not only is it exceedingly costly, but there are no data available now or expected in the future that would pinpoint likely sites. This approach is regarded as wholly impractical. #### f. Use of Less-Favored Plants Landscaping with plant species that are less favored by deer has been advocated as a way of reducing depredation of yards and gardens. However, as Cypher & Cypher (1988) and numerous other wildlife biologists have shown, when deer populations exhaust the preferred plant species they readily turn to those less-preferred. Thus, in the short term this approach might seem to work but longer term experience indicates that it is relatively ineffective. # E. PUBLIC EDUCATION PROGRAM NEEDS As noted above, an educated public that has an understanding of the population dynamics of deer, the concepts of carrying capacity, the different management options, and an understanding of the various values of the community in addressing ongoing management is essential to the successful implementation of a deer management program. The recommended public education program should encompass the following: • The County Deer Management website (www.co.fairfax.va.us/comm/deer/deermgmt <u>.htm</u>) already serves as a primary vehicle for making much of the information mentioned below more readily available and updatable. - Develop pamphlets that are easily read, easily mailed, available through various County offices and through the local Supervisors' offices. These should include information on: - Deer and deer biology. - Ecosystem and population dynamics in general, and as they relate to the interaction between deer and other species of both plants and animals. - Methods of population management, including their relative feasibility and costeffectiveness for achieving both short-term and long-term goals. - The deer management program. - Permits required for implementation of private control measures. - Fencing and repellents. - Safe driving and how to avoid deer on the road. - Lyme disease and its prevention (See Section IV-3 of this report). - Who to contact for additional information. - Establish networking among the following agencies for provision of consistent public information: - Fairfax County Government offices. - Fairfax County Supervisors district offices. - Fairfax County Animal Control Division. - Nature Centers. - Health Departments. - State agencies, particularly Virginia Department of Game and Inland Fisheries and the Virginia Department of Transportation. - The Humane Society. - Compile and make available a comprehensive bibliography of literature on deer management in urban environments. (The references attached to this section provide a limited example.) Make this information available to schools, civic and technical groups, and interested individuals. - Establish an archive of evidence documenting how deer can change the characteristics of a landscape. This should show: - Habitat characteristics before deer damage. - Habitat characteristics during and after deer damage. - Habitat characteristics during regeneration after deer population is reduced. - Statistics and trends for vehicle/deer collisions, number of injuries/fatalities, and types of damage. - Create a visual display of the above for use at schools, fairs, libraries, etc., and develop presentations for use at public meetings and meetings of civic groups. • Establish a County self service telephone number for wildlife problems and public information. This could be a menu driven hotline that would direct people to the proper location on the information network or to the appropriate County office. # F. PUBLIC AGENCY RESPONSIBILITY The Division of Animal Control of the Fairfax County Police Department has been assigned primary responsibility for deer management by the Board of Supervisors. However, due to the legal concept that ownership and disposition of wildlife is vested in the state, the Virginia Department of Game and Inland Fisheries exercises significant regulatory and permitting functions that affect Fairfax County's deer management activities. The Division of Animal Control, in coordination with applicable land-holding agencies (e.g., Northern Virginia Regional Park Authority, Fairfax County Park Authority) and other public authorities, implements the Integrated Deer Management Plan on public lands. In addition, the Division of Animal Control advises private business and residents in addressing deer management on privately owned parcels in Fairfax County. Deer management on federally owned tracts of land within Fairfax County (e.g., Mason Neck National Wildlife Refuge, Fort Belvoir, etc.) is the responsibility of the respective federal agencies and is subject to the applicable federal policies and regulations. # G. PROGRAM IMPLEMENTATION ACTIVITIES An Integrated Deer Management Plan was developed by County staff subsequent to the Consultant Report received in December, 1997. The Board of Supervisors in November, 1998, directed that program implementation activities commence. Subsequently, in the summer of 1999 the County Executive convened a Deer Management Committee comprised of experts and various stakeholders to evaluate the plan and initial implementation efforts and to prepare recommendations for the Board of Supervisors for further implementation of the plan during the fall and winter of 1999-2000. This committee meets annually to review progress in program implementation and to make recommendations on additional approaches. The Division of Animal Control of the Police Department prepares the annual Fairfax County Deer Management Report to the Board of Supervisors that contains extensive data on the program. Additional material is located on the County website (www.co.fairfax.va.us/community/deer) On December 8, 1997, the Fairfax County Board of Supervisors approved managed hunts for Riverbend Park and the Upper Potomac Regional Park, both in the Dranesville District. Plans by the Animal Control Division were approved by the Northern Virginia Regional Park Authority and the Fairfax County Park Authority for four managed hunts for each of the two locations. The hunts were planned for January and February of 1998. The managed hunts conducted in 1998 were largely unsuccessful in achieving planned program objectives and had associated costs that were difficult to justify. However, some of these costs could be attributed to greater-than-necessary safety measures that experience now indicates would not be needed in the future. In contrast, four managed hunts, involving 132 hunters, conducted in the fall and winter of 1999-2000 were very cost effective, with 195 deer taken at a cost per animal of \$9.51. The seven managed hunts conducted in the fall and winter of 2000-2001 involved 223 hunters, who took a total of 351 deer at a cost per animal of \$17.94. Of the 351 deer taken, 222 were donated to a program that feeds needy families. For 2001-2002 hunt season the program returned a profit of \$7.28 per animal because the permit fees collected exceeded program costs. The sharpshooter program, which utilizes Police Department Special Operations tactical teams, has been cost-efficient from the outset. These teams must engage in extensive marksmanship training on a regular basis in order to maintain the required proficiency. Instead of practicing on a target range, they are utilizing this required training time in a field setting with the deer more closely resembling operational targets. The harvested deer are collected by a charitable organization that provides meals to the needy. Even in the early part of the learning curve, this program has shown satisfactory harvest rates. Whereas, similar programs in most mid-Atlantic jurisdictions have harvests listed in hours per deer taken, Fairfax County in 2000 had a harvest rate of 1.54 deer per hour. From late December 1999 through late January 2000, fourteen sharpshooting sessions over a total of 41 hours were conducted with a total harvest of 89 deer at a cost of \$4.15 per animal. In the same period of 2000-2001 there were 23 sharpshooter sessions, totaling 94.75 man-hours, which took 146 deer, at a cost per deer taken of \$22.97. In 2001 the cost per animal rose to \$44.99 if all costs were attributed solely
to the Deer Management Program, but this would be fallacious due to the fact that this activity represents proficiency training for the police tactical units which must be conducted anyway. A major reason for this increase in cost per animal is that most of the sites this year represented repeat visits to locations first addressed last year and the year before. As the herd population density decreases, the time expended on each animal increases, and this is further increased by the increased wariness of the surviving members of the herd. Thus, the costs are very much in line with expectations and will drop once again as more new sites are brought into future years' mix of new and old locations. Clearly, the managed hunt and sharpshooter programs must be conducted largely in parkland due to safety considerations, but this is also where some of the most substantial benefits are to be achieved. From the outset, the Northern Virginia Regional Park Authority has taken a position of active involvement and has reaped corresponding benefits. The Fairfax County Park Authority has been slow to become actively involved and avail itself of the clear benefits offered by the program to the ecology of its parks. It is to be hoped that in the upcoming deer management season the Fairfax County Park Authority Board and executive staff will much more directly involve the FCPA in the program and thereby exercise the ecological stewardship that is so necessary to the biotic health of our parks and parkland. Out-of-season kill permits have, for some years, been one of the few legal avenues open to private property owners to permanently remove deer that are causing serious damage to their properties. Such permits are issued by the Virginia Department of Game and Inland Fisheries after verification of the damage. Generally, however, permits are only issued for holders of larger property parcels because of safety considerations. Fairfax County should work in coordination with the VDGIF to make these permits available on a wider basis to qualified residents. The use of roadside reflectors (strieter-lite technology) that reflect automobile headlights into wooded areas bordering the roadside has been suggested as a method of discouraging deer from crossing roadways in the evening and early morning hours when most deer-vehicle collisions occur. In mid-November 1999 the Board of Supervisors approved \$10,000 for a pilot program to test strieter-lite reflectors in selected locations. In addition, a grant of \$40,000 was received from the Virginia Department of Motor Vehicles for testing and evaluation of this technology at several locations in Fairfax County. Unfortunately, all of the test locations experienced confounding factors such as roadway modification, adjacent development, deer herd reduction through hunting and disease, etc, that made it impossible to draw reliable inferences from the collected data. In addition, the manufacturer of the reflectors has apparently discovered that the initial design was reflecting light in a part of the spectrum to which deer's eyes are relatively insensitive, and the design is now being changed. Such inferences as can be drawn from the data suggest that there is only a slight reduction in deervehicle collisions due to the use of reflectors. This conclusion appears to be borne out by tests in other eastern areas where there was an absence of confounding factors. The tests in Fairfax County have shown this technology to have so little promise that it cannot be recommended for continuance. Even though Fairfax County has not conducted a pilot project to test the feasibility of immunocontraception, this technology has shown a limited potential for the future. A program being conducted by the Humane Society of the United States on the campus of the National Institute of Standards and Technology in Montgomery County is being carefully monitored for possible applicability to Fairfax County. After the deer population has been reduced to generally acceptable levels, this methodology might provide a feasible method of sustaining these levels in some local herds for the long term. In mid-November, 2000, the Board of Supervisors approved \$10,000 to develop a pilot demonstration program on deer contraception. #### H. CONCLUSIONS The need for a comprehensive deer management program for Fairfax County does not appear to be in serious dispute. However, there is perhaps a somewhat wider array of opinion about the appropriate context for determining carrying capacity level for the management program and the particular methodologies to employ in reaching program goals. As noted in much of the reference literature, deer have traditionally been viewed as livestock and woodlands and meadows as pasture. Deer management models and programs have been based largely upon nutritional deer carrying capacity that does not consider issues of biodiversity, altered natural processes, natural herd demographics and behavior, or adverse impacts on mankind. The discrepancy of views can be seen in comparing a report by the Virginia Department of Game and Inland Fisheries with the recent Consultant Report. The VDGIF report states that deer densities ranging from 90-419 deer per square mile have been reported in various County parks and that ideal deer densities are 15-20 deer/sq. mile of suitable habitat. However, the 1997 Consultant Report and much of the scientific literature argues that a deer density of no more than 8-15 is required to meet a biodiverse goal of deer management. Many of the assumptions upon which the Integrated Deer Management Plan for Fairfax County is based need to be validated by further environmental assessment of the County and reconciled with more precisely defined ecological goals. It is evident that, while deer in Fairfax County have not reached a state of overpopulation (as earlier defined), they are near biological carrying capacity as shown by their poor physical condition and their relentless foraging outside their "natural" habitat. It is equally evident that, for the majority of citizens, deer have greatly exceeded cultural carrying capacity in terms of representing a serious vehicular hazard and their depredations on both private landscaping and our public parklands. There is now substantial evidence documenting the fact that ecological and biodiversity carrying capacities have long since been exceeded. In light of the Environmental Quality Advisory Council's role as an advocate for protection of environmental quality, it is EQAC's view that a biodiversity approach is needed in Fairfax County. However, as cautioned in the 1997 Consultant Report, EQAC too cautions against attempts to move forward with a response without adequate data, a clearly articulated plan, and education and consensus building of all major stakeholders. While moving quickly may assuage the concerns of some vocal groups, a true solution must address the problem with a long-term approach, considering all major stakeholders. Management must address an ecological goal that is based on sound science and considers the value system of an educated community. All of these caveats having been noted, the problem has now reached such proportions that every feasible approach must be employed not only to keep the burgeoning deer population in check, but more important, to systematically reduce it to sustainable levels. It is evident that the current managed hunt and sharpshooter programs have reached an admirable level of cost-effectiveness but are not reducing the Countywide deer population at a rate sufficient to achieve the recommended biodiversity carrying capacity. Thus, it is incumbent upon the Board of Supervisors to continue to take increased and decisive action to address this problem over the long term, while recognizing that it is not going to be possible to please all of the people all of the time. It is likewise incumbent upon the Fairfax County Park Authority to actively participate in the deer management program in order to exercise the necessary stewardship of the ecological well-being of the County's parkland. # I. RECOMMENDATIONS - 1. EQAC recommends that the Board of Supervisors continue to implement and monitor the comprehensive deer management program set forth in the Integrated Deer Management Plan adopted in November, 1998 and refined by the Deer Management Committee in the summer of 1999 and in subsequent periodic meetings. EQAC strongly supports the following broad goals encompassed in the plan and in the subsequent studies and evaluations: - Management based on reduction of local deer populations to sustainable levels. - Management based on a sound ecological approach that emphasizes biodiversity without preferential treatment of particular species. - Management based on an "in perpetuity" perspective that does not trade long-term interests for short-term gains. - Protection, restoration, and enhancement of the natural areas and environments that have been subjected to degradation by deer overabundance. - 2. EQAC strongly endorses on-going public input into the plan including surveys of public opinion and the inclusion of major stakeholders (home owners, environmental preservationists, public safety experts, wildlife biologists, public health experts, sport hunting groups, animal rights groups, etc.) in the refinement and implementation of the plan. EQAC fully supports continuation of both the input of a broad range of views and the use of spokespersons who can articulate program goals and the ongoing management approach to the varied community groups and viewpoints. - 3. EQAC strongly commends active participation of the Fairfax County Park Authority in the deer management program in order to provide improved stewardship of the parks, golf courses, and other parklands under its care and management. To this end EQAC requests the Board of Supervisors to share with the Park Authority EQAC's concern about the current deer
population levels in some of the County parklands. - 4. EQAC feels that, in addition to the measures implemented on public lands, the management program must address the problems of small private (mostly residential) property owners who are suffering serious impacts from deer and develop means for them to legally exercise effective control measures. - 5. EQAC feels that the management program must accomplish the following key objectives: - Immediate and sustained measures for reduction of the deer population in order to return the size of the local herds to levels consistent with the long term carrying capacity of their - particular local habitats. - Ongoing monitoring of availability of methods for maintaining population limits over the long term, such as immunocontraception and other experimental methods. - Consideration of development in the County and its effects on ecosystem health and biodiversity as these relate to deer management as well as to the quality of life generally. - 6. Since public acceptance of management programs is more easily achieved when there is full public understanding of the problem, the available management options, and their costs and other consequences, EQAC strongly recommends that the Board of Supervisors continue to provide for a vigorous program of public education as is now being done by the Division of Animal Control and on the County website. #### ACKNOWLEDGMENTS EQAC gratefully acknowledges the following individuals and organizations who have generously provided a variety of data and information included in this report and numerous helpful suggestions and recommendations: Earl Hodnett, Wildlife Biologist, Division of Animal Control, Fairfax County Police Department. W. Dan Lovelace, Wildlife Biologist, Virginia Department of Game and Inland Fisheries. Mark Pritt, Wildlife Biologist, Virginia Department of Game and Inland Fisheries. Jerry Sims, Wildlife Biologist, Virginia Department of Game and Inland Fisheries. Michael Uram, Analyst, Operations Support Bureau, Fairfax County Police Department. Allan Rutberg, Ph.D., Senior Scientist, Humane Society of the United States. Pat McElroy, Wildlife Biologist, Humane Society of the United States. Greg Weiler, Manager, Mason Neck Wildlife Refuge, U.S. Fish and Wildlife Service, U.S. Department of the Interior. Harriet Calloway, R.N., Epidemiologist, Fairfax County Health Department. Linda Smith, Fairfax County Health Department. Todd Bolton, Natural Resources Manager, Fairfax County Park Authority. # LIST OF REFERENCES NOTE: Most of the references listed below contain extensive bibliographies. The two symposia of 1997 contain between them 83 papers, each with its own separate bibliography, which, in the aggregate, offer hundreds of additional references for those wishing more detailed information on a variety of specific topics. Caughly, G. 1981. Overpopulation. In: Jewell, P. A. & Holt, S. (Eds.). Problems in management of locally abundant wild mammals. pp. 7-20. Academic Press, New York. Cypher, B. L. & Cypher, E. A. 1988. Ecology and management of white-tailed deer in northeastern coastal habitats. Biological Report 88 (15) U.S. Fish and Wildlife Service, U.S. Department of the Interior, Washington, DC 20240. DeCalesta, D. S. 1998. Effective diversity carrying capacity: An expanded concept for deer management. U.S. Forest Service Report, U. S. Department of Agriculture (Northeastern Forest Experiment Station, P.O. Box 928, Warren, PA). Division of Animal Control, Fairfax County Police Department. Fairfax County Deer Management Report to the Board of Supervisors, September, 2001. Ellingwood, M. R. & Spignesi, E. 1986. Management of an urban deer herd and the concept of cultural carrying capacity. Transactions of the Northeast Deer Technical Committee 22: 42-45. Flyger, V., Leedy, L. & Franklin, T. M. 1983. Wildlife damage control in eastern cities and suburbs. Proceedings of the Eastern Wildlife Damage Control Conference, 1: 27-32. McShea, W. J., Underwood, H. B. & Rappole, J. H. (Eds.) 1997. The science of overabundance: Deer ecology and population management. Smithsonian Institution Press, Washington and London. [400+pages, 23 peer-reviewed papers presented at a symposium organized by the Smithsonian Institution Conservation and Research Center, available in the book section of the National Museum of Natural History gift shop.] Natural Resource Consultants, Inc. Fort Hill, PA. December, 1997. Deer Management Recommendations for Fairfax County, Virginia. Warren, R. J. (Ed.) 1997. Deer Overabundance. Wildlife Society Bulletin 25 (2) (Special Edition) pp. 213-577. [60 peer-reviewed papers presented at a special symposium organized by the Wildlife Society. Available from the Wildlife Society, Washington, D.C.] # IV-2. IMPACTS OF GEESE IN FAIRFAX COUNTY # A. OVERVIEW Canada geese, once almost exclusively migratory, have to an increasing extent become year-round residents in Fairfax County. Although these resident populations are not evenly distributed throughout the County, many of our ponds and lakes, both large and small, and their adjacent shore areas have been occupied as permanent habitat. Geese have also become an increasing problem on parkland, golf courses and similar facilities. The problem is not so much the animals *per se* but rather the fecal contamination they bring to our water bodies and watercourses and their fouling of grassy open areas. Geese wastes are a well-documented source of fecal coliform bacterial contamination, which has reached alarming levels in many ponds, lakes, and reservoirs, even those forming part of our domestic water supply. An additional problem is the damage resident geese cause to our marshes, where they feed on sprouting plants so voraciously that some once plentiful botanical species have all but disappeared. Addressing these problems inevitably requires reducing the goose population, but this is complicated, because geese are protected by federal migratory waterfowl laws. # B. BACKGROUND # 1. Origins of the Goose Problem in Fairfax County In earlier times the Canada goose was a strictly migratory bird with its nesting range in wilderness areas of Canada and its winter range well to the south of our area. Geese passed through our area twice a year on their migrations. By the late 1960's some Canada geese had begun to establish resident populations in this region. This is thought to have begun with birds that were propagated to stock local hunting preserves. Since that time local Canada goose populations have undergone a dramatic upsurgence. This increase now includes numerous populations of geese that have become permanent residents in the mid-Atlantic region rather than migrating. These permanent populations have become quite obvious in many parts of Fairfax County. Wildlife biologists estimate that the Canada goose population is increasing at about 15 percent annually, which indicates that problems associated with resident goose populations soon will increase to critical levels unless remedial actions are undertaken. # 2. Environmental Impact of Geese A primary impact of geese is environmental pollution, particularly pollution of streams, ponds and lakes with fecal coliform bacteria from their wastes. The magnitude of the problem is illustrated in two examples below. Several years ago when the Evans Farm property in McLean was in the process of being rezoned for residential development, the farm pond, which was a prominent feature of the site, was extensively sampled to determine if it contained significant levels of pollution. It was known that a resident population of Canada geese was a major contributor to any pollution of the pond. Depending on where the water samples were taken in the pond, the levels of fecal coliform bacteria were found to be from 21 to 27 times those allowable in surface waters in the Commonwealth of Virginia. Drainage from this pond passed through an under-the-road culvert to a much larger pond on the other side of the highway that had two families of resident geese. This pond had fecal coliform counts about three times the allowable level. More recently an environmental pollution study was conducted to determine the total maximum daily load (TMDL) of fecal coliform contamination that should be permitted in Accotink Creek that feeds Lake Accotink. Federal Environmental Protection Agency (EPA) standards indicated that 98 percent of current levels of pollution should be eliminated, a truly draconian expectation. DNA tests to determine the sources of the extant fecal coliform pollution revealed that waterfowl (i.e., geese and ducks) accounted for 32 percent and other wildlife for about 17 percent of the total (see Figure IV-2-1). With waterfowl being federally protected species and other wildlife largely beyond our control, half of the current pollution load is effectively beyond the power of the County to eliminate in the near term. Another major impact of resident geese is significant alteration of the ecology of our marshlands. While migratory geese visited marshes on their twice-yearly trips through our region, the stopovers were brief and were timed so plants had either not yet sprouted or had matured sufficiently that they were not destroyed by feeding activity. However, populations of resident geese are permanent voracious foragers which feed on newly sprouting plants to the point that some plant species are nearly eliminated from the habitat. This is particularly true of plants such as wild rice, which reseed themselves annually, and provide food to many animal species. When all of the sprouting plants are consumed before they can mature and produce seeds there will be no new plants the following year. For example, where wild rice was once an abundant species, many of our marshes are now nearly devoid of it. Thus, because of the ways in which geese change the ecology of marshes they have caused loss not only of key plant species but also of the animal
species that are dependent on those plants. # C. ISSUES IN ADDRESSING THE PROBLEM # 1. Goose Population Biology Canada geese are large birds weighing 20-25 pounds with a life expectancy of some 20 years. Geese mate for life and remain together as pairs year-round. If one of the pair dies or is killed, the other will find a new mate. Mating season is from early February through early April with nesting season from late March through mid May. Geese begin to nest at three years of age. Eggs are laid approximately one per day until there are an average of five eggs per nest. Incubation (sitting the eggs) does not begin until all eggs have been laid. Eggs not being incubated are cool to the touch. Incubation time is 28-30 days. Normally all eggs hatch on the same day. Maturation of goslings occurs from early May to early July. Geese prefer isolated sites near water to nest, with small islands being a favored location. Nests usually are built on the ground in the open, but occasionally are located in brushy or marshy areas if flooding is not a problem. If chased from their accustomed area or if the nesting area has too many pairs, they will find alternative sites, sometimes farther away from water, sometimes near other ponds in the vicinity, and occasionally on rooftops or other unlikely locations. Migration is a learned process with which resident geese have not become familiar. Geese return to the general area of their birth to nest, sometimes to the exact site and at least to a nearby pond or lake. Migratory geese nest in Canada while geese nesting in our area are resident geese that were born here. Whereas migratory geese have a flight range of 2000-3000 miles, resident geese rarely venture more than 100-200 miles and then only in search of food, water, or safety. Migratory geese do not become resident unless they are injured and can no longer fly for long distances. Molting season runs from early June to late July. Flight feathers are lost in June and the birds are unable to fly for several weeks, but by early August new flight feathers are fully developed and all birds (except for those injured) are able to fly again. During the molting period geese need to be near water so they can escape from predators by swimming. They also need an easily accessible food supply during this time. Natural predators of geese include foxes, raccoons, large owls, snapping turtles, and more recently, coyotes. # 2. Considerations of Public Opinion Many citizens find considerable aesthetic reward in having a few geese in areas where they can be observed and feel that the presence of such attractive wildlife creates a pleasant ambience. While this may be true, many others find the fouling of yards, open space, and water bodies to be unacceptable, especially where geese congregate in appreciable numbers. Moreover, most of the public is unaware, or at best only dimly aware, of the extent to which geese are major polluters of our ponds, lakes and reservoirs, including some of our water supply sources. As the general public becomes better informed about the pollution aspects of goose populations, greater consensus on remedial approaches should result. #### 3. Federal Limitations on Remedial Action Geese, as migratory waterfowl, are protected by federal laws administered by the U.S. Fish and Wildlife Service. Therefore, population reduction by lethal means such as hunting is not an option. In situations where adult birds are creating an extreme nuisance the Department of Agriculture Wildlife Service can send staff to round up and relocate them. However, the Fish and Wildlife Service does issue permits for egg addling (including egg oiling) programs as a means of population stabilization. Fairfax County holds such a permit for programs anywhere in the County under supervision and/or monitoring by the County Wildlife Biologist. Use of trained Border Collies to harass geese into leaving an area is not regulated so long as they do not directly attack or kill the geese. # D. METHODS FOR POPULATION MANAGEMENT Population management methods that utilize immediate population reduction are not an option due to stringent federal regulations against killing geese once they are hatched. However, the methods outlined below are permissible and accepted approaches to controlling goose populations. Population stabilization coupled with measures that discourage geese from future nesting in an area has proved effective in longer term reductions of population. # 1. Population Stabilization Egg addling and egg oiling are quite effective in preventing eggs from hatching. Strictly speaking, egg addling is vigorous shaking of the egg at a fairly early stage in order to homogenize the contents. This will prevent further development of the egg. Egg oiling coats the surface of the shell with a vegetable oil such as corn oil, which will prevent oxygen from getting to the interior of the egg. This also is effective in halting further development of the egg. Sometimes both methods are referred to as "egg addling". When a clutch of eggs is thus treated the goose will continue to attempt to incubate them for the normal period, but they will fail to hatch, thus limiting the population to the adult geese already present. # 2. Population Exclusion Trained Border Collies have been successfully employed to herd geese away from areas where they constitute a nuisance. The geese soon learn to avoid areas patrolled by the dogs, regarding them as unsafe, and they move to other areas where they do not feel threatened. This method of control has been particularly effective in large, relatively open areas such as golf courses. The major negative aspect of this method is the impact on adjacent properties. When the dogs herd the geese off of one property, they necessarily go to the one next door or in the near vicinity. Thus, while one locale is benefited, adjacent locales are afflicted through transference of the problem. # 3. Special Foraging Areas In some cases, an area can be set aside where a small population of geese can be resident without creating an undue nuisance. However, in such cases the aesthetic appeal of having the geese nearby must be balanced by adequate consideration of the water pollution and other waste problems created. # 4. Landscaping Modifications Altering landscaping can sometimes be an effective tool in discouraging geese from congregating near ponds. Bushy plantings, reeds and tall grasses, strategically placed around a pond, will be perceived by geese as a hiding place for predators, thus discouraging them from using that area. # 5. Repellents There are commercially available, nontoxic chemical repellents that discourage geese from eating grass. The disadvantage to this approach is the necessity for frequent reapplications, since each time the grass is mowed most of the repellent is removed along with the clippings. # 6. Prohibition of Feeding Feeding geese encourages them to become resident and to congregate in areas where a "free lunch" is provided. This exacerbates the very nuisance that one is attempting reduce. Also, feeding bread and various kitchen scraps is harmful to the geese's health even though they will avidly feed on such items. # 7. Combined Approaches Clearly, combinations of several of the above approaches can be far more effective than their use individually. For example, the use of trained Border Collies together with landscaping modifications can be quite effective in creating an "undesirable" habitat. If egg oiling is added to this for the few nests that may be established, significant reductions in usage of this area in following years can be achieved. # E. PUBLIC EDUCATION PROGRAM NEEDS Public awareness of both the pollution problems caused by geese and of the mating and nesting cycle of geese is the key to being able to effectively address the "goose problem". At present, insufficient attention has been given by the public media to the pollution aspects of the problem. Since this pollution creates significant public health risks, the problem needs coverage on the County website and through informative bulletins to local homeowners associations. # F. PUBLIC AGENCY RESPONSIBILITY The office of the County Wildlife Biologist within the Division of Animal Control of the Fairfax County Police Department has been assigned primary responsibility for management of geese by the Board of Supervisors. However, due to the fact that Canada geese are federally protected waterfowl, the U.S. Fish and Wildlife Service exercises significant regulatory and permitting functions that govern Fairfax County's geese management activities. Fairfax County was the first local jurisdiction in the nation to be granted a master permit for egg addling programs and is thereby authorized to train citizens, as individuals or groups, to conduct egg addling under its monitoring and control. Except for federally issued hunting permits, intentional killing of hatched geese by humans is prohibited by federal law. In cases where it is necessary for adult geese or hatchlings to be removed from an area, this activity is conducted by the staff of the U.S. Department of Agriculture - Wildlife Services under permit from the U.S. Fish and Wildlife Service. The population stabilization (egg oiling) program is highly cost effective since, once trained, all labor intensive activities are performed by local citizen volunteers. The only staff activities required are training, monitoring and reporting under the terms of the federal permit. # G. PROGRAM IMPLEMENTATION ACTIVITIES Goose management programs have been implemented at a number of locations in Fairfax County. Among the locations and the measures implemented under the Fairfax County permit and monitoring are: #### 1. Annandale - a. Northern Virginia Community College population stabilization and nuisance abatement, 3 years. - b. Pinecrest Community population stabilization and nuisance abatement, 2 years. - c. Pinecrest
Golf Course population stabilization and nuisance abatement, 2 years. #### 2. Centerville - a. Franklin Farms population stabilization, 3 years. - b. Westfields population stabilization, 2 years. #### 3. Fairfax County - a. Lake Barcroft population stabilization and nuisance abatement, 4 years. - b. Fairfax County Parks population stabilization, 4 years. - c. Copeland Pond population stabilization and nuisance abatement, 3 years. - d. Brook Hills population stabilization and nuisance abatement, 3 years. - e. Waters Edge population stabilization and nuisance abatement, 2 years. #### 4. Oakton a. Fox Lake - population stabilization, 2 years. #### 5. Reston a. Reston Community - population stabilization, 3, years. #### 6. Vienna - a. Trinity School population stabilization, 3 years. - b. Champion Lake population stabilization, 2 years All of these programs have demonstrated reasonable degrees of success in stabilizing populations. In some cases, populations have actually declined over time due to discouraging geese from further attempts to nest there. #### H. CONCLUSIONS While geese in small numbers are regarded by many as a pleasant addition to the local ambience, large resident goose populations in many areas of the County constitute a major environmental nuisance and public health risk. Resident goose populations tend to congregate near ponds, lakes, and slow-flowing streams, which leads to contamination of these water bodies with high levels of fecal coliform bacteria. In addition they foul the grassy open areas in the vicinity with their feces. The high growth rate of the resident goose population and the limitations on methods of control have raised this pollution to levels that are not only environmentally unacceptable but that now constitute a significant public health problem. While there are already good programs in place to address these problems, they need to be replicated more widely in additional areas of the County. Moreover, more intensive public information campaigns and community outreach efforts are badly needed to actively involve a larger number of individuals and community organizations in population control programs. # I. RECOMMENDATIONS - 1. EQAC finds the current programs are effective and should be continued. - 2. EQAC feels that the current programs need to be replicated in many other areas of the County by training additional citizens and homeowner groups in goose population stabilization methodology. - 3. EQAC recommends enhanced public education outreach to sensitize all Fairfax County residents and owners of nonresidential properties to the pollution problems caused by geese and the programs available for addressing them. - 4. EQAC recommends enhanced public education outreach to acquaint all Fairfax County residents with the destructive role excessive goose populations play in our marshland habitats. #### USEFUL REFERENCES The organization GeesePeace in America has an excellent and informative website that covers many aspects of the goose problem and methods of addressing them. It can be accessed at http://www.geesepeace.org # IV-3. WILDLIFE BORNE DISEASES OF CONCERN IN FAIRFAX COUNTY #### A. OVERVIEW There are a number of zoonotic diseases (those in which wildlife serves as a reservoir) that affect humans. Four such diseases of greatest concern in Fairfax County are West Nile Virus, Lyme Disease, Rabies, and the complex of diseases caused by fecal coliform bacteria. The causative agents, modes of transmission, and means of prevention are briefly discussed below. # B. BACKGROUND # 1. West Nile Virus West Nile is a flavivirus that is transmitted to humans and other warm-blooded animals by mosquitoes that have fed on birds that are infected with the virus. Crows have been particularly implicated as a reservoir species, but it is now known that many other bird species are also involved. Mosquitoes are intermediate carriers that convey the virus from birds to humans. The principal intermediate carrier is *Culex pipiens*, the common house mosquito. There is currently no evidence for person-to-person transmission (except in the unusual situation of organ transplants or blood transfusions from infected donors). Some people infected with West Nile virus experience no symptoms. Others have mild flu-like symptoms such as low-grade fever, head and body aches, skin rash or swollen lymph nodes. In a few cases such as the elderly, children, and those with weakened immune systems, the infection may cause encephalitis (inflamation of the brain) or, rarely, death. Encephalitis symptoms include rapid onset of high fever, severe headache, stiff neck, muscle weakness, and coma. The virus is of recent occurrence in this country, having been first identified in New York only three years ago. The Centers for Disease Control and Prevention (CDC) of the U.S. Public Health Service have confirmed 161 cases including 18 deaths since 1999. However, since most of those infected have mild symptoms that do not require a visit to the doctor, these reported cases no doubt represent only a fraction of actual infections. #### a. Preventive Measures #### i. Mosquito Habitat Elimination An important preventive measure to reduce the chance of infection with West Nile virus is to eliminate, wherever possible, standing water that provides a breeding habitat for mosquitoes. Any containers such as cans, pails, wheelbarrows, etc., should be emptied and stored in such fashion that water will not collect in them. Bird baths and similar containers should have the water changed every two or three days. Ponds can be stocked with the small fish *Gambusia* that feed on mosquito larvae. There are two species *Gambusia affinis* and *G. holbrooki*. Both are highly effective in keeping ponds and lakes free of mosquito larvae. *Gambusia affinis*, the most common species, has become endemic in many areas of Eastern Virginia and is readily transplanted from one pond to another. # ii. Insect Repellents Since it is nearly impossible to completely eliminate the presence of mosquitoes, some of the most effective preventive measures available for mosquito-borne infections such as West Nile virus and tick-borne Lyme disease are sprays or lotions containing DEET (N,N-diethyl-meta-toluamide). The active ingredient, DEET, was developed by the U.S. Department of Agriculture in 1946, originally for use by the military. The most convenient method of application to the exposed skin is as an aerosol spray. A recent study reported in the New England Journal of Medicine showed that the higher the concentration of DEET in the spray, the longer lasting the protection. In the case of mosquitoes, products containing 20% DEET were effective for four hours, those with 25% DEET were effective for five hours, and those with 35% DEET were effective overnight. It is estimated that there have been more than eight billion applications of DEET over the past 50 However, a study of DEET by years with an excellent safety record. pharmacologists at Duke University, reported in the November 2001 issue of the Journal of Experimental Neurology, indicated that frequent and prolonged DEET exposure might cause adverse neurological effects. It was recommended that use be limited to preparations containing no more than 30% DEET for adults and lower concentrations for children. # 2. Lyme Disease Lyme disease, caused by the bacterial spirochete *Borrelia burgdorferi*, is transmitted to humans primarily, if not exclusively, by *Ixodes scapularis* the common deer tick. Deer ticks are dark brown to black and about the size and shape of a sesame seed. The white-tailed deer appears to be the primary reservoir, but rodents have also been implicated. Lyme disease was first identified in Lyme, Connecticut, in the mid-1970s when a group of children developed arthritis-like symptoms. Within a few days to several weeks of receiving an infected tick bite most victims will have a red, slowly expanding "bull's-eye" rash (red in the center, pink at the periphery) and such symptoms as malaise, fever, headache, muscle and joint aches. The longer a case of Lyme disease persists without treatment, the more severe, debilitating and long lasting the symptoms are likely to be, such as arthritis and neurologic abnormalities. Many of the physicians treating Lyme disease have found three or four week courses of doxycycline or amoxicillin to be effective treatments for early stages of the disease, but later stages may require intravenous antibiotics for a month or more. Confirmed cases of Lyme Disease underwent a sharp increase through June 1997 (Table IV-3-1). The decrease of the next two years may be attributable to greater public awareness of the threat represented by deer ticks and greater use of proper preventive measures when hiking and working in wooded areas. It is unclear, however, whether a decrease in deer population will lead to a corresponding decrease in Lyme Disease cases, since other animals can act as reservoir species and may inhabit areas within which deer populations decline. However, it is interesting to note that neighboring, semi-rural Loudoun County, which has a large deer population, has the highest per capita incidence of Lyme disease cases reported in the Commonwealth. In 2001 there were 65 cases compared with 29 cases in 1999 according to the Loudoun County Health Department. This suggests a strong upward trend in incidence where there are large populations of white-tailed deer. | Table IV-3-1 Reported Lyme Disease Cases Meeting Centers for Disease Control (CDC) Case Definition Program Fairfax County | | | | | |---|-------------------|--------------------------------------|--|--| | Period Covered | Reported
Cases | Contracted outside of Fairfax County | | | | July 1994-June 1995 | 14 | N.A. | | | | July 1995-June
1996 | 22 | N.A. | | | | July 1996-June 1997 | 31 | N.A. | | | | July 1997-June 1998 | 16 | 8 | | | | July 1998-June1999 | 13 | 9 | | | | July 1999-June 2000 | 50 | 8 | | | | July 2000-June 2001 | 51 | 9 | | | | July 2001-June 2002 | 61 | 33 | | | (Source: Fairfax County Department of Health) #### a. Preventive Measures #### i. Vaccine In our annual Report for 1999 we noted that a new vaccine (Lymrix) for the prevention of Lyme disease had just been released. In our Annual Report for 2000, we noted that there had been adverse reactions to the vaccine and advised consultation with your personal physician about the advisability of being vaccinated. As a result of an increasing number of adverse reactions, this vaccine has now been withdrawn from the market. While it is true that vaccination of those persons intensively exposed to deer ticks might have been helpful, for the vast majority of the population consistent use of ordinary preventive measures should be entirely adequate. When engaged in activities that might result in exposure to deer ticks, proper clothing is a must, preferably long pants tucked into boot tops or lower legs, trouser bottoms and sock tops sprayed with insect repellent, since most ticks are encountered close to the ground. # ii. Insect repellent The same DEET-containing repellents recommended for mosquitoes (see West Nile Virus above) are also highly effective for ticks. See the discussion of DEET-containing insect repellents in the West Nile virus section above. #### 3. Rabies Rabies is a viral disease that affects the nervous system and may have a latent period from a number of days to several weeks. During the latent period, between the time of an animal bite and the onset of overt symptoms, the virus is propagated along the nerve fiber sheaths until it reaches critical areas of the brain. While rabies has been present in this area for many years, it exists at a low level with the incidence appearing to cycle over a period of several years. This is attributed to the fact that infection, when it reaches the symptomatic stage, is uniformly fatal. Thus, an infected animal may infect several others and there will appear to be a relatively high incidence, but when those animals die there are fewer carriers for a period of time when the incidence appears to be lower. Rabies is transmitted to humans and other mammals through the saliva of an infected animal almost always in the overtly symptomatic stage which usually only lasts about ten days. During this time an infected animal usually exhibits aberrant behavior, such as a nocturnal animal being around during the day, exhibiting signs of confusion, showing an unsteady gait, desperately seeking water but unable to drink, often aggressively approaching dogs and humans, etc. The main wildlife reservoirs in this area are raccoons, foxes, and to a lesser extent some bats. Domestic animals, e.g., dogs and occasionally cats, may act as secondary transmitters of the disease after having contracted it from a wildlife source. #### a. Preventive measures The most important measure for prevention of rabies is to avoid being bitten by or direct contact with an animal that might be infected. If you encounter an animal that is behaving strangely or exhibiting symptoms such as excessive drooling, contact Fairfax County Animal Control at 703-830-3310 without delay. This also applies if you find a dead animal that you suspect may have died of rabies. Animal Control will send a professionally trained officer to impound the animal for quarantine and testing. If you are bitten or scratched or come in contact with the animal's saliva, seek immediate medical attention so a determination can be made as to whether you may require a course of preventive inoculations. The protective serum used for such inoculations has been substantially improved in recent years so that fewer doses are required and those have fewer unpleasant side effects. #### 4. Fecal Coliform Bacterial Diseases Fecal coliform bacterial diseases in humans are caused primarily through ingesting or wading or swimming in contaminated water. There are a number of bacteria that can be responsible, but the thing they share in common is being present in the gut and intestinal wastes of a variety of wildlife and domestic animals. The relatively new science of molecular genetic DNA testing has made it possible to reliably identify the particular animals responsible for the pollution of a given water sample. Studies carried out at several sites in Fairfax County indicate that Canada geese living in and about ponds and streams are principal contributors, while ducks, deer, raccoons, and foxes and domestic dogs and cats are also significant sources (see Table IV-2-1 on page IV-26). When the wastes from these animal sources are deposited directly into, or washed into, streams and ponds the pollution can build up to hazardous levels. For example, one pond in the McLean area, inhabited by Canada geese that had become resident, was extensively tested several years ago and was found to have levels of fecal coliform bacterial contamination that ranged from 21 to 27 times that allowable in surface waters in the Commonwealth of Virginia. Another occasional source of such contamination is from leaks, overflows or ruptures in the public sanitary sewer system or private septic systems. While illness from such bacteria is usually not life threatening and is readily treated with antibiotics, exposure to waters that one has reason to believe may be polluted should be scrupulously avoided. Recently, in an attempt to reach budgetary goals, the Health Department suggested the possibility of eliminating the Stream Monitoring Program. EQAC intervened in the discussion, pointing out that this monitoring was environmentally critical and not duplicated in any other County programs. As a result, the Board of Supervisors directed that the Stream Monitoring program be continued at present levels. #### a. Preventive measures There is a general solution to this problem in which pollution of our surface waters is prevented in the first place. The main individual solution to the problem is to avoid disease caused by fecal coliform bacteria by not drinking water from sources whose pollution status is unknown and by not wading or swimming in water that is known to be, or suspected of being, polluted. # C. PUBLIC EDUCATION PROGRAM NEEDS The Fairfax County Department of Health has available an excellent booklet entitled *Preventing Tick-borne Diseases in Virginia*. They also have a brochure entitled *Rabies and Animal Bites: What you should know and what you should do*. Additional information is available through the Health Department section of the County website www.co.fairfax.va.us. With the recent nearly epidemic explosion of West Nile Virus, there is a very high probability of it becoming endemic in our area for the long term. Public education materials, comparable to those noted above, are available from our own County Health Department. In addition, the Centers for Disease Control and Prevention of the U.S. Public Health Service has some recently developed materials that are quite good. Because of the frequently changing levels of pollution in our surface waters, it is not practical to create printed materials identifying those streams and ponds that are affected by fecal coliform bacterial pollution. However, our excellent County website is an ideal way for the Health Department to post frequent updates on results of the Stream Monitoring Program and notices about waters that should be avoided due to pollution. The public media generally do a fairly good job of reporting the finding of rabid animals. Such incidents could also be posted on the County website as advisories. # D. PUBLIC AGENCY RESPONSIBILITIES The primary public agency responsibilities lie in the following areas: - 1. Public education - 2. Monitoring of disease incidence - 3. Monitoring of pollution and exposure hazards - 4. Providing animal control - 5. Providing mosquito abatement, where needed The Animal Control Division of the Fairfax County Police Department is responsible for animal control activities such as impounding animals suspected of being rabid and similar wildlife-related activities. The Health Department has responsibility for most prevention and public education activities and also the various monitoring and information gathering programs. # **E. CONCLUSIONS** The upsurgence of West Nile Virus and Lyme Disease require continual monitoring and public education and are rapidly becoming serious public health issues. Rabies is a continuing low level, more or less steady state, problem. Waters polluted by excessive levels of fecal coliform bacteria require mitigation, where possible, and monitoring and posting to warn the public against exposure. Malaria, which began looming as a significant problem as this report was about to go to press, will require careful monitoring and epidemiologic tracking as well as mosquito abatement. # F. RECOMMENDATIONS The recommendations provided below address only the third section of this chapter (Wildlife Borne Diseases of Concern in Fairfax County). Recommendations addressing deer management and geese issues are found beginning on pages IV-21 and IV-32, respectively. - 1. The Health Department should continue the Stream Monitoring Program and post advisories on currently polluted waters. - 2. The Health Department should continue and enhance its excellent public education programs. - 3. The Police Department should continue its animal control program and, in conjunction with the Health Department, expand public education initiatives in key areas, such as control of rabies and of wildlife contributing to pollution of surface waters. - 4. The potential need for County-wide mosquito abatement programs as a means of suppressing West Nile Virus and malaria should be vigorously evaluated. ####
LIST OF REFERENCES Fairfax County Department of Health. Preventing Tick-borne Diseases in Virginia. Fairfax County Department of Health. Rabies and Animal Bites: What you should know and what you should do.